Question
Answered step-by-step
DukeLoris2651
I need help understanding how to summarize this chapter as I am…

I need help understanding how to summarize this chapter as I am having trouble writing putting it together.

 

 

4.1 What Is Consciousness?

Learning Objectives

Understand what is meant by consciousness
Explain how circadian rhythms are involved in regulating the sleep-wake cycle, and how circadian cycles can be disrupted
Discuss the concept of sleep debt

Consciousness describes our awareness of internal and external stimuli. Awareness of internal stimuli includes feeling pain, hunger, thirst, sleepiness, and being aware of our thoughts and emotions. Awareness of external stimuli includes experiences such as seeing the light from the sun, feeling the warmth of a room, and hearing the voice of a friend.

We experience different states of consciousness and different levels of awareness on a regular basis. We might even describe consciousness as a continuum that ranges from full awareness to a deep sleep. Sleep is a state marked by relatively low levels of physical activity and reduced sensory awareness that is distinct from periods of rest that occur during wakefulness. Wakefulness is characterized by high levels of sensory awareness, thought, and behavior. Beyond being awake or asleep, there are many other states of consciousness people experience. These include daydreaming, intoxication, and unconsciousness due to anesthesia. We might also experience unconscious states of being via drug-induced anesthesia for medical purposes. Often, we are not completely aware of our surroundings, even when we are fully awake. For instance, have you ever daydreamed while driving home from work or school without really thinking about the drive itself? You were capable of engaging in all of the complex tasks involved with operating a motor vehicle even though you were not aware of doing so. Many of these processes, like much of psychological behavior, are rooted in our biology.

 

States of consciousness vary over the course of the day and throughout our lives. Important factors in these changes are the biological rhythms, and, more specifically, the circadian rhythms generated by the suprachiasmatic nucleus (SCN). Typically, our biological clocks are aligned with our external environment, and light tends to be an important cue in setting this clock. When people travel across multiple time zones or work rotating shifts, they can experience disruptions of their circadian cycles that can lead to insomnia, sleepiness, and decreased alertness. Bright light therapy has shown to be promising in dealing with circadian disruptions. If people go extended periods of time without sleep, they will accrue a sleep debt and potentially experience a number of adverse psychological and physiological consequences.

4.2 Sleep and Why We Sleep

 

Learning Objectives

Describe areas of the brain involved in sleep
Understand hormone secretions associated with sleep
Describe several theories aimed at explaining the function of sleep
Name and describe three theories about why we dream

We spend approximately one-third of our lives sleeping. Given the average life expectancy for U.S. citizens falls between 73 and 79 years old (Singh & Siahpush, 2006), we can expect to spend approximately 25 years of our lives sleeping. Some animals never sleep (e.g., some fish and amphibian species); other animals sleep very little without apparent negative consequences (e.g., giraffes); yet some animals (e.g., rats) die after two weeks of sleep deprivation (Siegel, 2008). Why do we devote so much time to sleeping? Is it absolutely essential that we sleep? This section will consider these questions and explore various explanations for why we sleep.

 

We devote a very large portion of time to sleep, and our brains have complex systems that control various aspects of sleep. Several hormones important for physical growth and maturation are secreted during sleep. While the reason we sleep remains something of a mystery, there is some evidence to suggest that sleep is very important to learning and memory.

4.3 Stages of Sleep

Differentiate between REM and non-REM sleep
Describe the differences between the three stages of non-REM sleep
Understand the role that REM and non-REM sleep play in learning and memory

Sleep is not a uniform state of being. Instead, sleep is composed of several different stages that can be differentiated from one another by the patterns of brain wave activity that occur during each stage. While awake, our brain wave activity is dominated by beta waves. As compared to the brain wave patterns while asleep, beta waves have the highest frequency (13-30 Hz) and lowest amplitude, and they tend to show more variability. As we begin to fall asleep, our brain wave activity changes. These changes can be visualized using an EEG and are distinguished from one another by both the frequency and amplitude of the brain wave. The frequency of a brain wave is how many brain waves occur in a second, and frequency is measured in Hertz (Hz). Amplitude is the height of the brain wave (Figure 4.7). Sleep can be divided into two different general phases: REM sleep and non-REM (NREM) sleep. Rapid eye movement (REM) sleep is characterized by darting movements of the eyes under closed eyelids. Brain waves during REM sleep appear very similar to brain waves during wakefulness. In contrast, non-REM (NREM) sleep is subdivided into three stages distinguished from each other and from wakefulness by characteristic patterns of brain waves. The first three stages of sleep are NREM sleep, typically followed by REM sleep. In this section, we will discuss each of these stages of sleep and their associated patterns of brain wave activity.

 

The different stages of sleep are characterized by the patterns of brain waves associated with each stage. As a person transitions from being awake to falling asleep, alpha waves are replaced by theta waves. Sleep spindles and K-complexes emerge in stage 2 sleep. Stage 3 and stage 4 are described as slow-wave sleep that is marked by a predominance of delta waves. REM sleep involves rapid movements of the eyes, paralysis of voluntary muscles, and dreaming. Both NREM and REM sleep appear to play important roles in learning and memory. Dreams may represent life events that are important to the dreamer. Alternatively, dreaming may represent a state of proto-consciousness, or virtual reality, in the mind that helps a person during consciousness.

4.4 Sleep Problems and Disorders

Describe the symptoms and treatments of insomnia
Recognize the symptoms of several parasomnias
Describe the symptoms and treatments for sleep apnea
Recognize risk factors associated with sudden infant death syndrome (SIDS) and steps to prevent it
Describe the symptoms and treatments for narcolepsy

Many people experience disturbances in their sleep at some point in their lives. Depending on the population and sleep disorder being studied, between 30% and 50% of the population suffers from a sleep disorder at some point in their lives (Bixler, Kales, Soldatos, Kaels, & Healey, 1979; Hossain & Shapiro, 2002; Ohayon, 1997, 2002; Ohayon & Roth, 2002). This section will describe several sleep disorders as well as some of their treatment options.

 

Many individuals suffer from some type of sleep disorder or disturbance at some point in their lives. Insomnia is a common experience in which people have difficulty falling or staying asleep. Parasomnias involve unwanted motor behavior or experiences throughout the sleep cycle and include RBD, sleepwalking, restless leg syndrome, and night terrors. Sleep apnea occurs when individuals stop breathing during their sleep, and in the case of sudden infant death syndrome, infants will stop breathing during sleep and die. Narcolepsy involves an irresistible urge to fall asleep during waking hours and is often associated with cataplexy and hallucination.

4.5 Substance Use and Abuse

Describe the diagnostic criteria for substance use disorders
Identify the neurotransmitter systems impacted by various categories of drugs
Describe how different categories of drugs affect behavior and experience

While we all experience altered states of consciousness in the form of sleep on a regular basis, some people use drugs and other substances that result in altered states of consciousness as well. This section will present information relating to the use of various psychoactive drugs and problems associated with such use. This will be followed by brief descriptions of the effects of some of the more well-known drugs commonly used today.

 

Substance use disorder is defined in DSM-5 as a compulsive pattern of drug use despite negative consequences. Both physical and psychological dependence are important parts of this disorder. Alcohol, barbiturates, and benzodiazepines are central nervous system depressants that affect GABA neurotransmission. Cocaine, amphetamine, cathinones, and MDMA are all central nervous stimulants that agonize dopamine neurotransmission, while nicotine and caffeine affect acetylcholine and adenosine, respectively. Opiate drugs serve as powerful analgesics through their effects on the endogenous opioid neurotransmitter system, and hallucinogenic drugs cause pronounced changes in sensory and perceptual experiences. The hallucinogens are variable with regards to the specific neurotransmitter systems they affect.

4.6 Other States of Consciousness

 

Define hypnosis and meditation
Understand the similarities and differences of hypnosis and meditation

Our states of consciousness change as we move from wakefulness to sleep. We also alter our consciousness through the use of various psychoactive drugs. This final section will consider hypnotic and meditative states as additional examples of altered states of consciousness experienced by some individuals.

Hypnosis is a focus on the self that involves suggested changes of behavior and experience. Meditation involves relaxed, yet focused, awareness. Both hypnotic and meditative states may involve altered states of consciousness that have potential application for the treatment of a variety of physical and psychological disorders.